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Historical Problem Analyzed: Prospecting



More Recently: Contaminant Monitoring Systems

Provide sufficient and timely information on the 
quality of the river water to decision makers; 

Rapid identification of pollutant sources;

Provide for immediate precautions after a deliberate 
or accidental spill.



Design of Monitoring Systems:

Selection of water quality variables;

Identification of location of sampling 
stations;

Determination of sampling frequencies.



Steady state flow and transport solutions;

Geometry of the river network
(prospecting applications);

Previous studies:
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1

3

2

4
5

6

7

8
9

10

11

12

A

B
C

G

I

J

K

E F

H
D



Objectives:

Determination of the optimal monitoring locations 
based on transient hydrodynamic and contaminant 
transport analysis;

Comparison of the results of the proposed 
methodology with a recent study published in the 
literature;

Purpose is to emphasize the effects of hydraulic and 
watershed characteristics on the optimal solution.

Large scale application (Altamaha River System)



Methodology:

Hydrodynamic 
and 

Contaminant Transport 
Analysis

Design of the Optimization Model

Genetic Algorithms Enumeration

Optimal Solution

Scenario generation



Hydrodynamics and Contaminant Transport:

Use of a dynamic rainfall-runoff model for the simulation 
of runoff quantity and quality;

Handle networks of unlimited network size;

Use of a wide variety of standard and natural open 
channel geometries, and spatially variable hydraulic 
parameters;

User defined external flows and water quality inputs.

SWMM



Performance Measures:

Average detection time
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Performance Measures:

Detection Likelihood
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Ne : total number of contamination events within a scenario.



Optimization Model:
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Application:

Hypothetical River Network
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Application:

Total number of scenarios, S =12;
Simulation time: 4 days;
Contamination occurs at the beginning of simulation.

Case 1 Scenario: Single contamination at any junction
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Application:
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Application:

Comparison for Case 1 with Ouyang et al.
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Application: (an inferior solution)
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Application:

Total number of scenarios;

Simulation time: 4 days;
Contamination occurs at the beginning of simulation.

Case 2: Two simultaneous spills at distinct junctions
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Application:
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Application:

Total number of scenarios;

Simulation time: 4 days;
First spill occurs at the beginning of simulation.

Case 3: Two spills with a 15 min time lag
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Application:
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Application:

Emphasis on hydraulic characteristics
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Application:

Emphasis on watershed characteristics
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Altamaha River Basin Application:

µ
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Altamaha River Network (Assumptions):
Trapezoidal Channels throughout river network;
• GIS and USGS based channel geometry data can be included.

Constant slope for each river reach;
• GIS and USGS based channel geometry data can be included also 

other spatially variable parameters can be introduced.
Transient contaminant transport with fate and dilution effects ;
• Unsteady rainfall events can be analyzed as demonstrated.

Single contamination scenarios are considered.
• Multiple contaminant sources can be considered.



Flow Calibration:
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Altamaha River Network (Scenarios):



Altamaha River Network (Breakthrough Curves-1):
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Altamaha River Network (Breakthrough Curves-2):
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Altamaha River Network (5 Sensor Solution):

Detection threshold  : 0.0001 mg/l
Reliability : 100%
Ave. Detection time  : 1323 min



Altamaha River Network (5 Sensor Solution):

Detection threshold  : 0.01 mg/l
Reliability : 96%
Ave. Detection time  : 2706min



Altamaha River Network (20 Sensor Solution):

Detection threshold  : 0.0001 mg/l
Reliability : 100%
Ave. Detection time  : 366 min



Altamaha River Network (20 Sensor Solution):

Detection threshold  : 0.01 mg/l
Reliability : 100%
Ave. Detection time  : 456 min



Altamaha River Network (Pareto Front Analysis)

n n
dl sim int t t= −

: nth selected time of injection. n
int

simt

n 1,2,3,...=

: Simulation time (4 days). 
n
dlt : Detection time limit for the scenarios with nth selected time of injection

and penalty for non-detected contaminations within this set.

spt : Time period for possible spills to occur (2 days).

(max travel time 8 days)
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Number of sensors : 5
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Number of nodes spill may occur : 100
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(Variable penalty function)



Altamaha River Network (Pareto Front Analysis)

Solutions on the Pareto Front
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Altamaha River Network (Pareto Front Analysis)

Solutions on the Pareto Front
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Conclusions:

Hydrodynamic and watershed characteristics 
have important impacts on transport of 
contaminants through a river network which effect 
the optimal monitoring locations selected.

Optimal monitoring locations highly depend on 
these factors rather than the geometry of the river 
system.

If the objective of the monitoring system is to 
detect contamination in a shorter time, dynamic 
transport simulation is a crucial step in design.

Representation of the scenarios considered is 
important.



Thank you…


