Optimal Monitoring Network Design in River Networks

I. Telci, K. Nam, J. Guan and M. M. Aral

Multimedia Environmental Simulations Laboratory (MESL) School of Civil and Environmental Engineering Georgia Institute of Technology, Atlanta, GA

Historical Problem Analyzed: Prospecting

More Recently: Contaminant Monitoring Systems

 Provide sufficient and timely information on the quality of the river water to decision makers;

Rapid identification of pollutant sources;

 Provide for immediate precautions after a deliberate or accidental spill.

Design of Monitoring Systems:

Previous studies:

Based on:

- Steady state flow and transport solutions;
- Geometry of the river network (prospecting applications);

11

- Determination of the optimal monitoring locations based on transient hydrodynamic and contaminant transport analysis;
- Comparison of the results of the proposed methodology with a recent study published in the literature;
- Purpose is to emphasize the effects of hydraulic and watershed characteristics on the optimal solution.
- Large scale application (Altamaha River System)

Methodology:

Hydrodynamics and Contaminant Transport:

- Use of a dynamic rainfall-runoff model for the simulation of runoff quantity and quality;
- Handle networks of unlimited network size;
- Use of a wide variety of standard and natural open channel geometries, and spatially variable hydraulic parameters;
- User defined external flows and water quality inputs.

Performance Measures:

Average detection time

$$\overline{t}(X) = \frac{1}{S} \sum_{i=1}^{S} t_i(\widehat{X})$$
$$X = [x_1, x_2, ..., x_M]^T$$

$$t_{i}(\widehat{X}) = min\{d_{i}^{1}(X), d_{i}^{2}(X), ..., d_{i}^{M}(X)\}; i = 1, 2, 3, ..., S$$

 $d_i^m(X)$: detection time of the *m*th monitoring station for scenario *i*.

S : total number of scenarios.

M : total number of monitoring stations.

 x_m : index of the candidate junction for m^{th} monitoring station. Penalty: for a non-detected scenario, $t_i(\widehat{X}) = Simulation time$.

Performance Measures:

Detection Likelihood

$$R(X) = \frac{1}{S} \sum_{i=1}^{S} \left(\frac{1}{N_e} \sum_{k=1}^{N_e} \delta_k(\widehat{X}) \right)_i$$

 $\delta_k(X) = \begin{cases} 0 & \text{if } k^{th} \text{ contamination is not detected,} \\ 1 & \text{if } k^{th} \text{ contamination is detected.} \end{cases}$

 $N_{e}: {\rm total} \ {\rm number} \ {\rm of} \ {\rm contamination} \ {\rm events} \ {\rm within} \ {\rm a} \ {\rm scenario}.$

Optimization Model:

$$f_1 = Minimiz_X \left\{ \overline{t} \left(\widehat{X} \right) \right\}$$

$$f_2 = Maximiz_X \left\{ R\left(\widehat{X}\right) \right\}$$

s.t.
$$M = M_o$$

 M_o : total number of monitoring sites.

Hypothetical River I	Vetwo	ork		<u> </u>			
3	11 E F 9		4) ft ———		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Reach	Length (ft)	Flow rate (ft ³ /s)	Depth (ft)	Width (ft)	Channel slope	Manning 's n
G	Α	2000	10	1.31	10	0.0001	0.02
J	B	2000	10	1.31	10	0.0001	0.02
A 4 I 6	С	2000	10	1.31	10	0.0001	0.02
5 1	D	2000	10	1.31	10	0.0001	0.02
$\mathbf{\lambda}$	E	1000	10	1.31	10	0.0001	0.02
K	F	2000	10	1.31	10	0.0001	0.02
	G	3000	20	2.08	10	0.0001	0.02
	Н	4000	20	2.08	10	0.0001	0.02
	Ι	2000	30	2.75	10	0.0001	0.02
Three monitoring stations	J	3000	30	2.75	10	0.0001	0.02
at junctions:	K	5000	60	4.53	10	0.0001	0.02

 $\binom{12}{3} = 220$ possible placements

Case 1 Scenario: Single contamination at any junction

- Total number of scenarios, S = 12;
- Simulation time: 4 days;
- Contamination occurs at the beginning of simulation.

Case 1: Results

$1 \qquad B \qquad 2 \qquad B \qquad H$	11 10 E 9			
G J 4 I 6	Optimization Method	Optimum Sensor Locations	Average Detection Time (min)	Reliability (%)
5 A K	Genetic Algorithm	6 - 9 - 12	63.75	100
	Enumeration	6 - 9 - 12	63.75	100

Comparison for Case 1 with Ouyang et al.

3 1 C 1 B 2	8 D 7	10 3 E F H 2 98			
'G 4	J	Study	Optimum Sensor Locations	Average Detection Time (min)	Reliability (%)
5 A		This Study	6 - 9 - 12	63.75	100
This studyOuyang et al.	К	Ouyang et al.	6 – 7 – 12	72.50	100
		(12)			

Application: (an inferior solution)

Case 1: Results

$1 \qquad \begin{array}{c} 3 \\ C \\ B \\ 2 \end{array} \qquad D$	$H = \begin{bmatrix} 11 \\ 10 \\ E \\ 9 \end{bmatrix}$			
G J	Optimization Method	Optimum Sensor Locations	Average Detection Time (min)	Reliability (%)
5 A 4 I 6	Genetic Algorithm	4 – 7 – 9	1000	83
	Enumeration	4 – 7 – 9	1000	83

Case 2: Two simultaneous spills at distinct junctions

Total number of scenarios;

$$S = \begin{pmatrix} 12 \\ 2 \end{pmatrix} = 66$$

L

- Simulation time: 4 days;
- Contamination occurs at the beginning of simulation.

Case 2: Results

3 1 B 2 8 D 7	H 10 F H 9			
G J	Optimization Method	Optimum Sensor Locations	Average Detection Time (min)	Reliability (%)
5 A + 1 6	Genetic Algorithm	6 - 9 - 12	37.73	100
К	Enumeration	6 - 9 - 12	37.73	100
	12			

Case 3: Two spills with a 15 min time lag

Total number of scenarios;

$$S = 2\binom{12}{2} = 132$$

- Simulation time: 4 days;
- First spill occurs at the beginning of simulation.

Case 3: Results

3 1 B C 8 H	$10 \\ E \\ F$			
G J 4 J	Optimization Method	Optimum Sensor Locations	Average Detection Time (min)	Reliability (%)
5 A 1 6	Genetic Algorithm	6 – 9 – 12	44.55	100
(12)	Enumeration	6 – 9 – 12	44.55	100

Emphasis on hydraulic characteristics

		11						
3	10 E	F Reach	Length (ft)	Flow Rate (ft ³ /s)	Depth (ft)	Width (ft)	Channel Slope	Manning n
1 C 8 H	9	Α	2000	10	1.31	10	0.0001	0.02
H B 2 D H		В	2000	10	1.31	10	0.0001	0.02
		С	2000	10	1.31	10	0.0001	0.02
		D	2000	10	1.31	10	0.0001	0.02
G		E	1000	10	1.31	10	0.0001	0.02
1		F	2000	10	1.31	10	0.0001	0.02
5 A 4 I 6		G	3000	20	3.96	10	0.0001	0.05
, · · · · · · · · · · · · · · · · · · ·		н	4000	20	2.08	10	0.0001	0.02
		1	2000	30	2.75	10	0.0001	0.02
• Original configuration K		J	3000	30	2.75	10	0.0001	0.02
♦ Modified configuration		К	5000	60	4.53	10	0.0001	0.02
	Case	Hydraulic Configuratio	n Dopti Sei Loca	imum nsor ations	Avera Detect Time (r	ge ion nin)	Reliability (%)	
	1	Original	6 - 9	9 – 12	63.7	5	100	
	· ·	Modified	2 - 7	7 – 12	70.0	0	100	
	2	Original Modified	6 - 9 2 - 9	9 – 12	37.73	3	100 100	
		Original	6-9	9 – 12	44.5	<u>-</u> 5	100	
	3	Modified	2-9	9 – 12	46.1	4	100	

Emphasis on watershed characteristics

Catchments	Connected	Area
	Junction	(ac)
A ₁	1	1
A ₂	2	2
A ₃	3	1
A ₄	4	2.5
A ₅	5	1
A ₆	6	2.5
A ₇	7	3
A ₈	8	1
A ₉	9	1.5
A ₁₀	10	0.5
A ₁₁	11	1
A ₁₂	12	2.5

2000 $ft \rightarrow 1 ac$

Rainfall intensities : 1, 2 and 3 in/hour Rainfall duration : 1 hour Rain Concentration: 10 mg/L Simulation time : 10 hours

Altamaha River Basin Application:

Altamaha River Network (Assumptions):

- Trapezoidal Channels throughout river network;
 - GIS and USGS based channel geometry data can be included.
- Constant slope for each river reach;
 - GIS and USGS based channel geometry data can be included also other spatially variable parameters can be introduced.
- Transient contaminant transport with fate and dilution effects ;
 - Unsteady rainfall events can be analyzed as demonstrated.
- Single contamination scenarios are considered.
 - Multiple contaminant sources can be conside

0 25 50 100 Kilometers

Flow Calibration:

Altamaha River Network (Scenarios):

Altamaha River Network (Breakthrough Curves-1):

Altamaha River Network (Breakthrough Curves-2):

Altamaha River Network (5 Sensor Solution):

Altamaha River Network (5 Sensor Solution):

Altamaha River Network (20 Sensor Solution):

Altamaha River Network (20 Sensor Solution):

 $t_{dl}^n = t_{sim} - t_{in}^n$

(max travel time 8 days)

- t_{in}^n : nth selected time of injection. n = 1, 2, 3, ...
- t_{sp} : Time period for possible spills to occur (2 days).
- t_{sim} : Simulation time (4 days).
- t_{dl}^{n} : Detection time limit for the scenarios with nth selected time of injection and penalty for non-detected contaminations within this set.

Conclusions:

- Hydrodynamic and watershed characteristics have important impacts on transport of contaminants through a river network which effect the optimal monitoring locations selected.
- Optimal monitoring locations highly depend on these factors rather than the geometry of the river system.
- If the objective of the monitoring system is to detect contamination in a shorter time, dynamic transport simulation is a crucial step in design.
- Representation of the scenarios considered is important.

Thank you...

